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Quantifying the Concept of Coordination Number 

BY FORREST L. CARTER* 

Laboratoire des Rayons-X, CNRS ,  Grenoble, France 

(Received 27 March 1978; accepted 18 May 1978) 

Mathematical requirements necessary for the quantification of coordination numbers of irregular 
coordination polyhedra are listed. A general mathematical formula is given and applied to the case of the 
CsC1 structure using the concept of the polyhedral atomic volume. As a function of the atomic radii 
difference, the coordination number in this structure varies smoothly from 8 to 14 to 6. The partial 
coordination numbers of 8 and 6, corresponding to first and second nearest neighbors, are also functionally 
related to the generalized coordination number. 

The determination of the coordination number (CN) of 
an atom in a structure or molecule is clearly recognized 
as an important first step in the characterization of that 
atom's contribution to the bulk material properties. The 
host of interdependent chemical and physical properties 
that are known to be CN dependent for various 
elements include size or radius, atomic valence, bond 
characteristics (including type, hybridization, ionicity, 
strength and energy), radical or species stability and 
reactivity, phonon and electronic spectra, as well as 
electrical and magnetic properties (Pauling, 1960; 
Goodenough, 1963). In particular, we note that 
Templeton (1953, 1955) has developed a simple 
formula for obtaining a good estimate of the Madelung 
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constant given only the coordination numbers and the 
stoichiometry. In light of the above, it is not surprising 
that the set of coordination numbers for a substance 
constitute some of the principal data sought and 
reported in structure determinations, whether the 
material of interest be gaseous (Herzberg, 1960-1966), 
liquid (Smith, 1964), crystalline (Frank & Kasper, 
1958), or amorphous [insulating (Konnert & Karle, 
1973), semi-conducting (Renninger & Averbach, 
1973), or metallic (Gilman, 1975)]. 

While the coordination number or ligancy of a 
central atom is often readily obtained by enumerating 
the number of neighbors bonded to the central atom, 
there are numerous cases where the criteria for the 
enumeration process are indistinct. Consider, for 
example, the first, second, and third 'shells' of ligands 
and solvent molecules enclosing transition-metal ions in 
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polar liquids or first-, second-, and third-nearest 
neighbors of metal atoms in intermetallic compounds. 
Frank & Kasper (1958) defined a 'geometrical coor- 
dination number' as the number of faces on an atom's 
polyhedral 'domain' (termed here 'Voronoi cell'). 
However, this definition is less than ideal because: (1)it 
treats all atoms as having the same size; (2) it assigns 
equal weight to both large and small (unimportant) 
polyhedral faces; and (3) it makes no distinction as to 
the kind of bond formed with a neighbor. In view of the 
fact that modern inorganic chemistry was essentially 
initiated in the 1890's with Alfred Werner's develop- 
ment of coordination theory and the coordination 
number (see Bailar, 1956), it is surprising that until now 
the simple concept of the CN has not been generalized 
to permit a clear-cut treatment of these more com- 
plicated and numerous cases. 

The purpose, then, of this communication is to show 
by reasonable example that quantification of the 
concept of CN can be accomplished readily. In so 
doing, suitable criteria for CN quantification are listed, 
and a mathematical formula for the calculation of CN 
satisfying these criteria is applied as a function of 
atomic size to the case of the simple CsCI structure. 
Finally, suggestions are offered concerning both the 
ways in which non-integer values of coordination 
numbers might be employed and the means by which the 
CN concept might be further extended. At this point, 
then, it appears desirable to make a distinction between 
CN and ligancy, reserving the latter term to indicate the 
number of neighbors bonded to the atom of interest and 
to mathematically calculate the CN as a function of 
ligancy. 

Current chemical usage of the words 'coordination' 
and 'coordinate', as in CN and coordinate compound, 
retains little of the probable original intent referring to 
equivalence among the ligands as well as an 
equivalence in their bond formation to the central atom. 
That such a connotation of equivalence is likely is 
indicated by both recent and early usage ( O x f o r d  
Engl i sh  Dic t ionary ,  1933); for example, in 1643, the 
intent is quite clear in the phrase ' . . .working together 
for common good, no t . . . by  subordination, but by 
coordination of principal causes'. In the development of 
a mathematical expression for CN as indicated below, 
we find the connotation of ligand equivalency reassert- 
ing itself. 

Consider the interaction of a central atom with its ith 
neighbor as being measured by A i such that the sum of 
all its interactions is A t = fff, i A i  (all neighbors with 
non-zero A g), with A t being finite. Then the CN as a 
function of all the A g should satisfy the following 
restrictions: 
(a) CN(Ai) is dimensionless and >1 if any neighbors 
with non-zero A~ exist. 
(b) CN(Ai) is a continuous function of the A i but its 
slope may not be. 

(c) If N interactions exist such that ,41 = ,4 2 . . . . .  ,4u 
for all neighbors with non-zero ,4i, then CN(,4i) = N. 
(d) If some ofthe,4i  are unequal, then CN(,4i) < N. 
(e) If integer m of the ,4 i are equal and large and N -- m 
are equal and small, then N > CN(,4i) > m. 

The formulae proposed here for the quantification of 
CN within the above restrictions are given as equations 
(1) and (2), 

- ( 1 )  
C N  

1 _ wi ,4 i w j ,4 i  (2) 
CNw l 

where w i in equation (2) are finite weighting factors. 
Reasonable measures, ,4i, of bond formation might 

include bond strengths, bond energies, force constants 
for the bond-stretching motion, overlap integrals, or 
bond orders. The corresponding CN for each kind of,4~ 
might be expected to differ in minor ways.  As an 
example of the application of the proposed formula 
equation (1) and minor differences between CN for 
different kinds of,4i, we will use a geometric approach 
involving the construction of a polyhedral cell about 
atoms of different sizes in the simple CsCI structure. If 
planes perpendicular to the bond axis are placed 
midway between the outside spherical surfaces of the 
bonded atoms of different radii, one may construct 

Atom A B 

(a) T / a o  = - 0.4 

A 

i x i 

(b) T / a  o = 0.15 4 

Fig. 1. Scaled, space-filling PAV cells for the CsCI structure. They 
have coordination numbers CNarea Of 8.0 and 10.04 for the 
upper ,4 and B atoms, and of 14.00 and 9.62 for the lower pair, 
while their ligancies or 'geometrical' CN are 8, 14, 14, and 14, 
respectively. 
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what has been described elsewhere as polyhedral 
atomic volume (PAV) cells (Carter, 1974, 1976). These 
cells are the smallest polyhedra formed by the planes 
about the atoms and are often space-filling for simple 
structures. We note that this construction does not 
require the spherical atoms to be in contact and 
generally they will not be. Even if the spheres overlap, 
the position of planes perpendicular to the internuclear 
axis depends only on the radii difference. Fig. 1 
illustrates such PAV polyhedra for the CsCI structure 
for two values of T = r~ -- rs, where r A and r s are the 
respective radii of the atoms A and B. In Fig. 1 (a), the 
smaller A atom ( T / a  o = --0.4) has an octahedral cell, 
while the B atom has 14 faces, eight of them triangular 
corresponding to weak A - B  interactions; six of them 
have octagonal faces corresponding to strong B - B  
interactions in the (100)  directions (a 0 = crystal cell 
edge). For T/a  o -- 0.154, Fig. l(b), we find that the now 
larger A atom has 14 faces of equal area, while the B 
atom has also 14 faces of rather different areas with the 
A - B  interactions predominating. In the last case, T/a  o 
-- 0.154, the former usage of the CN concept would 
assign the same CN to both atoms A and B. 

The new results of this communication are suggested 
in Fig. 2, where the CN(T)  are plotted for both atoms 
in the CsCI structure as a function of their normalized 
radii difference T/a  o. (The coefficient, f A - s ,  for a 
'partial'  CN, discussed below, is also plotted.) For the A 
atom, the coordination number CNvo ~ based on the 
pyramidal volume associated with each face is plotted 
as a solid line. Here the face is the base and the atom 
location is the pyramidal apex. The dashed line often 
slightly below CNvo ~ corresponds to CNarca and is 
based on the cell-face areas (= A t). The dotted line is the 
mirror image of CNvo ~ and corresponds to CN~o ~ for the 
B atom. For the A atom we note that CN~o ~ changes 
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Fig. 2. CNvo 1 and the corresponding fA-s for atom A illustrated 
as a function of increasing A atom size; the dotted line indi- 
cates the B atom CNvo v The dashed line gives the A atom 
CNarea which is based on the areas of its polyhedra faces. For the 
A atom the partial coordination numbers CNA_ 8 and CNA_ A are 
8 and 6, respectively, for T/a o > 0.2886. 

smoothly from the octahedral value of 8 and T/a  o < 
--0.2886, to a maximum of 14 at T/a  o = 0.1581 (or 
0.1540 for CN,rea), and then finally decreases to a 
limiting value of 6 at T/a  o = 0.866. In the CsC1 
structure we note that CNvo ~ = 6 is unreal for finite 
atoms since it corresponds to an imbedding of the small 
atom in the large one as I T/aol --, V/3/2 = 0.866. 

While the formula for CN, equation (1), was derived 
primarily intuitively from the past usage [restriction (c) 
above], we note in Fig. 2 that all other expectations and 
restrictions are also satisfied. As further support for its 
correctness, let us consider the case where the bond 
interaction terms are identified as the bond orders 
between the central atom and its ligands, i.e. A i = m i. 
The chemical valence of the central atom is then the 
sum of the bond orders, V = ~ ni, so that we have 
equation (3): 

CN-v = = . ,  . (3)  al i W i 

We may calculate the average ligand bond order h then 
as the valence divided by CNv, , equation (4): 

V _ N ni 

h -  CNval Z r/i "--if" (4) 
i 

Thus h corresponds to a weighted average of the n i with 
the normalized weighting factors ( n i / V ) .  

The concept of a 'partial coordination number '  is 
useful when there are different kinds of the A~ 
interactions. The different kinds might correspond to a 
grouping of the N interactions on the basis of (1) bond 
type, ionic or covalent; (2) neighbors, metal or non- 
metal; or (3) shells, ligand distance from the central 
atom. For an atom with L different kinds of neighbors, 
a 'partial '  coordination number CN t can be usefully 
defined as 

CNt (Z~) A~ (5) 

where both sums, ~v__, ,, are only over the lth kind of 
neighbors and 

L 

Z N t = N .  
/=1 

The partial CN I are related to the total CN by 

1 L 
= ~ f tVCNi  

CN /=1 

where the partial coefficients are 

(6) 

(7) 
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with 
L 

~-~ f t - -  1. 
/=1 

Clearly, these coefficients must satisfy the condition 
that 0 < f~ _< 1. As an example, we have plotted at the 
top of Fig. 2 for the A atom, the fA-B based on 
pyramidal volume which corresponds to only the A - B  
bonds. Thus when T/a o < -0-2886,  the A atom has 
only B neighbors (CN = 8) and fA-n = 1. Thereafter 
for increasing T/a o, f decreases, eventually to zero at 
T/a o = +0.866. When the A and B atoms have equal 
radii, at T/a o = 0, the A - B  interactions must 
predominate, since f,~-B = 0" 750 and there are 8 A - B  
interactions compared to 6 A - A  interactions. We also 
note that in the region of--0 .2886 _< T/a o <_ O. 866, the 
partial coordination numbers for those interactions are 
just what our crystal-chemical sense indicates they 
should be, namely, CNA_ B = 8 and CNA_ A = 6. This 
general approach has been utilized to study the boron 
PAV in the transition-metal borides as a function of  
coefficientsf(B-metal interactions) (Carter, 1976). 

Mackay (1971, 1974) has discussed crystal struc- 
tures also on a geometric basis using the polyhedra of 
Voronoi (1908), which corresponds to the case of equal 
(or zero) radii, i.e. T = r A - r B = 0. He has employed 
the solid angle (as a fraction of a sphere) subtended by 
the mutual polyhedral face of two atoms as a measure 
of their interaction. Using his results for Ba3V20 8, and 
taking these solid angles as the A~ in equation (1), we 
immediately calculate the coordination number of Ba I 
as CN = 10.704 with partial coordination numbers 
CN(BaI--O~) = CN(Bai--On) = 6.0. In the case of the 
CsCI structure, we note that the results will be very 
similar to those of Fig. 1 if the solid angle is employed 
as the A i of equation (1). Thus we find that the CN 
maxima (= 14) occur at T/a o = 0.1482, 0.1540, and 
0.1581 for the A i based on subtended solid angles, 
polygon face areas, and pyramidal volumes, respec- 
tively. Finally, we note that while Mackay (1971, 1974) 
introduced a connectivity matrix C~j the sum of whose 
rows (or columns) gave the CN for atom i (or j),  the 
resultant CN is identical to that proposed by Frank & 
Kasper (1958). 

Two possible uses for a quantified non-integer CN 
might be in the refinement of the empirical relation 
(Templeton, 1953, 1955) for a reduced Madelung con- 
stant (~ and in the classification of compounds and struc- 
ture types by an average CN. In equation (8), the 
'reduced Madelung constant, (t' 

(t = 1 - 8 9 -  1.O0/m (8) 

is given in terms of m, a weighted-harmonic-mean CN 
defined as equation (9), where 

1 
- = ( ~  k i l p , ) l ( ~  k,). (9) 
m 

k i atoms of one kind had the usual integral coordination 
number Pi, and the sum is over the contents of the 
crystal unit cell (or over a stoichiometric formula). 
Explicitly, then, the first suggestion would entail the use 
of a quantified CN, as per this communication, to refine 
Templetgn's empirical relation, equation (8), for the 
reduced Madelung constant. This might entail the 
weighted CN of equation (2) where the weights w i 
might be employed to account for the usual change in 
electronic charge between the first and second shell of 
ions. The second related use might employ a weighted- 
mean coordination number like m of equation (9) to 
characterize and catalog both compounds and 
crystalline-structure types. Since a CN based on the 
PAV cell is a function of both atomic position 
parameters and atomic size, it constitutes an appropri- 
ate measure for replacing the Pi in the case of individual 
compounds. In the case of structure types with the 
atoms in symmetry-fixed positions, the Voronoi cell 
(Smith, 1964; Frank & Kasper, 1958; Voronoi, 1908), 
where all atoms have the same size, provides a suitable 
base for calculating the CN's required for a structure- 
characterizing mean CN ]equation (9)]. 

As a final suggestion, we note that in the calculation 
of radial distribution functions for glassy materials, the 
coordination number Nij(rq) is defined (Konnert & 
Karle, 1973) as the number of neighbors of kind j the i 
atom has at distance rij. The extension of the present 
CN ]equations (1) or (2)] suggests the use of a moving 
window of width d centered at rij with the weights being 
a function of position s within the window, i.e. 

Iriy-- d/21 <_ IsI _< Irij + d/21. (10) 

On a geometric cell basis, a moving-window approach 
could produce in real space PAV-like cells of increasing 
volume corresponding to the unreduced Brillouin zones 
of increasing zone number in reciprocal space. 
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C~8H1902ClzRh, monoclinic, P2Jc, Z = 8, FW 441.2, a = 17.390 (3), b = 12.816 (2), c = 16.523 (4) A, 
fl = 109.41 (1) °, V = 3473 (1) /~3, Dx = 1.69, D,, = 1.65 (1) g c m  -3 (flotation), 2(Cu K ~  = 1.5418 /~, 
(graphite monochromator),/ l(Cu Kgi) = 108.0 cm -1, final R = 0.030 for 3522 observed reflexions [1:2,, > 
3a(FoZ)l in the range 0 < 2t~ < 108 °. 

Introduction 

In a complex study of  the chemical  and physical  
properties of  1,3-substituted rhodium chelates 
(Bouchal,  Skramovsk~,, (2oupek, Pokorn~ & Hrabak,  
1972; Ryska,  Bouchal  & Hrabak,  1973), the deter- 
minat ion of  the crystal  and molecular  structure of  the 

symmetr ical ly  substituted 1,3-diphenyl- l ,3-propane-  
dion ato ( 1,6-dichloro- 1,5-cyclooctadiene)rhodium (I) 
(Je6n9 & Huml, 1974) was followed by a study of  the 
structure of  the asymmetr ical ly  substituted title 
compound.  

The lattice parameters  were determined by the least- 
squares method using 15 reflexions from the angle 

Table 1. Final fractional coordinates of  non-H atoms and their e.s.d.'s (x 104) 

x y z x y z 

Rh(l) 1308.7 (2) 3806.2 (3) 5087.8 (2) Rh(2) 4482-9 (2) 1047.6 (3) 3436.1 (2) 
Cl(11) -358 (1) 3557 (I) 5474 (1) C1(21) 6149 (1) 2342 (1) 4186 (1) 
C1(12) 2378 (1) 5901 (1) 5830 (1) C1(22) 4537 (1) -1311 (1) 4142 (1) 
O(11) 411 (2) 3194(2) 4051 (2) O(21) 4277(2) 2548(2) 3739(2) 
O(12) 1746 (2) 4574 (2) 4259 (I) 0(22) 3463 (2) 596 (2) 3710 (2) 
C(101) 1800 (3) 5466 (4) 3039 (3) C(201) 2302 (3) 608 (4) 4122 (3) 
C(102) 2371 (4) 6133 (4) 3578 (4) C(202) 2369 (3) -466 (4) 4244 (4) 
C(103) 2753 (4) 6887 (4) 3247 (4) C(203) 1737 (4) -1032 (5) 4378 (4) 
C(104) 2580 (4) 6961 (4) 2377 (4) C(204) 1043 (4) -531 (5) 4376 (4) 
C(105) 2010 (4) 6327 (5) 1839 (4) C(205) 967 (4) 528 (5) 4232 (4) 
C(106) 1619 (4) 5567 (4) 2162 (4) C(206) 1591 (3) 1092 (4) 4108 (4) 
C(107) 724 (3) 4115 (4) 2947 (3) C(207) 3108 (3) 2237 (4) 4143 (3) 
C(108) 1402 (3) 4668 (4) 3448 (3) C(208) 3007 (3) 1175 (4) 3984 (3) 
C(109) 292 (3) 3396 (4) 3268 (3) C(209) 3726 (3) 2854 (4) 4034 (3) 
C(110) -399 (4) 2788 (5) 2644 (4) C(210) 3766 (4) 3995 (4) 4258 (4) 
C( l l l )  1090(3) 2568(4) 5813(3) C(211) 5092(3) 1663(4) 2657(3) 
C(112) 1893 (4) 2137 (5) 6425 (4) C(212) 4894 (4) 1082 (5) 1829 (4) 
C(113) 2592 (4) 2869 (5) 6636 (4) C(213) 4674 (4) -58 (4) 1900 (4) 
C(114) 2459 (3) 3808 (4) 6031 (3) C(214) 4376 (3) -269 (4) 2654 (3) 
C(115) 2038 (3) 4701 (4) 6126 (3) C(215) 4908 (3) -493 (4) 3478 (3) 
C(116) 1614 (4) 4912 (5) 6774 (4) C(216) 5824 (3) -536 (4) 3785 (4) 
C(117) 1018 (4) 4086 (6) 6792 (4) C(217) 6192 (3) 389 (4) 3509 (4) 
C(I18) 724 (3) 3462 (4) 5976 (3) C(218) 5670 (3) 1362 (4) 3429 (3) 


